首页> 外文OA文献 >Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees
【2h】

Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees

机译:使用逻辑回归,人工神经网络和决策树的汇集cDNA微阵列分析对乳腺癌生存能力进行基因表达谱分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

[[abstract]]Background: Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann-Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression.Results: The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence.... Conclusions: The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence.
机译:[[摘要]]背景:微阵列技术可以同时获取有关数千个基因的信息。我们分析了已发布的乳腺癌微阵列数据库,以预测五年复发率,并比较了三种人工神经网络(ANN),决策树(DT)和逻辑回归(LR)数据挖掘算法的性能以及DT-ANN和两种复合模型的性能DT-LR。从Gene Expression Omnibus收集微阵列数据集,合并四个乳腺癌数据集,以预测五年乳腺癌复发。数据汇总后,汇总了757名受试者,5个临床变量和13452个遗传变量。进行了bootstrap方法,Mann-Whitney U检验和20倍交叉验证,以研究具有100个最显着p值的候选基因。使用准确性和ROC曲线下的面积评估DT,LR和ANN模型的预测能力。结果:DT模型在应用于测试样本时表现出最低的预测能力和最差的外推能力。人工神经网络模型显示出最佳的预测能力并显示出最佳的外推法。通过每个模型的整合确定的21个最相关基因,使用Cox回归进行了分析,结果表明乳腺癌五年复发的风险增加了3.53倍(95%CI:2.24-5.58)。选择的21个基因可以预测乳腺癌的复发。在这些基因中,CCNB1,PLK1和TOP2A在细胞周期G2 / M DNA损伤检查点途径中。肿瘤学家在了解乳腺癌复发的基因表达谱时可以为患者提供遗传信息。

著录项

  • 作者

    Chou, HL;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en-US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号